Разделы
О сайте
Услуги
Соглашение
Проекты
FAQ
Исходники
Доки
Алгоритмы
Форматы
Download
Ссылки
Заказать
Форум
Гостевая
 
Алгоритмы

Алгоритм LZW

Рассматриваемый нами ниже вариант алгоритма будет использовать дерево для представления и хранения цепочек. Очевидно, что это достаточно сильное ограничение на вид цепочек, и далеко не все одинаковые подцепочки в нашем изображении будут использованы при сжатии. Однако в предлагаемом алгоритме выгодно сжимать даже цепочки, состоящие из 2 байт. Процесс сжатия выглядит достаточно просто. Мы считываем последовательно символы входного потока и проверяем, есть ли в созданной нами таблице строк такая строка. Если строка есть, то мы считываем следующий символ, а если строки нет, то мы заносим в поток код для предыдущей найденной строки, заносим строку в таблицу и начинаем поиск снова. Функция InitTable() очищает таблицу и помещает в нее все строки единичной длины. InitTable(); CompressedFile.WriteCode(СlearCode); CurStr=пустая строка; while(не ImageFile.EOF()){ //Пока не конец файла     C=ImageFile.ReadNextByte();     if(CurStr+C есть в таблице)         CurStr=CurStr+С;//Приклеить символ к строке     else {         code=CodeForString(CurStr);//code-не байт!         CompressedFile.WriteCode(code);         AddStringToTable (CurStr+С);         CurStr=С; // Строка из одного символа     } } code=CodeForString(CurStr); CompressedFile.WriteCode(code); CompressedFile.WriteCode(CodeEndOfInformation); Как говорилось выше, функция InitTable() инициализирует таблицу строк так, чтобы она содержала все возможные строки, состоящие из одного символа. Например, если мы сжимаем байтовые данные, то таких строк в таблице будет 256 (“0”, “1”, ... , “255”). Для кода очистки (ClearCode ) и кода конца информации (CodeEndOfInformation ) зарезервированы значения 256 и 257. В рассматриваемом варианте алгоритма используется 12-битный код, и, соответственно, под коды для строк нам остаются значения от 258 до 4095. Добавляемые строки записываются в таблицу последовательно, при этом индекс строки в таблице становится ее кодом. Функция ReadNextByte() читает символ из файла. Функция WriteCode() записывает код (не равный по размеру байту) в выходной файл. Функция AddStringToTable() добавляет новую строку в таблицу, приписывая ей код. Кроме того, в данной функции происходит обработка ситуации переполнения таблицы. В этом случае в поток записывается код предыдущей найденной строки и код очистки, после чего таблица очищается функцией InitTable() . Функция CodeForString() находит строку в таблице и выдает код этой строки. Пример: Пусть мы сжимаем последовательность 45, 55, 55, 151, 55, 55, 55. Тогда, согласно изложенному выше алгоритму, мы поместим в выходной поток сначала код очистки <256>, потом добавим к изначально пустой строке “45” и проверим, есть ли строка “45” в таблице. Поскольку мы при инициализации занесли в таблицу все строки из одного символа, то строка “45” есть в таблице. Далее мы читаем следующий символ 55 из входного потока и проверяем, есть ли строка “45, 55” в таблице. Такой строки в таблице пока нет. Мы заносим в таблицу строку “45, 55” (с первым свободным кодом 258) и записываем в поток код <45>. Можно коротко представить архивацию так: * “45” — есть в таблице; * “45, 55” — нет. Добавляем в таблицу <258>“45, 55”. В поток: <45>; * “55, 55” — нет. В таблицу: <259>“55, 55”. В поток: <55>; * “55, 151” — нет. В таблицу: <260>“55, 151”. В поток: <55>; * “151, 55” — нет. В таблицу: <261>“151, 55”. В поток: <151>; * “55, 55” — есть в таблице; * “55, 55, 55” — нет. В таблицу: “55, 55, 55” <262>. В поток: <259>; Последовательность кодов для данного примера, попадающих в выходной поток: <256>, <45>, <55>, <55>, <151>, <259>. Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов. Мы знаем, что для каждого кода надо добавлять в таблицу строку, состоящую из уже присутствующей там строки и символа, с которого начинается следующая строка в потоке. Алгоритм декомпрессии, осуществляющий эту операцию, выглядит следующим образом: code=File.ReadCode(); while(code != СodeEndOfInformation){     if(code = СlearСode) {         InitTable();         code=File.ReadCode();         if(code = СodeEndOfInformation)             {закончить работу};         ImageFile.WriteString(StrFromTable(code));         old_code=code;     }     else {         if(InTable(code)) {             ImageFile.WriteString(FromTable(code));             AddStringToTable(StrFromTable(old_code)+             FirstChar(StrFromTable(code)));             old_code=code;         }         else {             OutString= StrFromTable(old_code)+             FirstChar(StrFromTable(old_code));             ImageFile.WriteString(OutString);             AddStringToTable(OutString);             old_code=code;         }     } } Здесь функция ReadCode() читает очередной код из декомпрессируемого файла. Функция InitTable() выполняет те же действия, что и при компрессии, т.е. очищает таблицу и заносит в нее все строки из одного символа. Функция FirstChar() выдает нам первый символ строки. Функция StrFromTable() выдает строку из таблицы по коду. Функция AddStringToTable() добавляет новую строку в таблицу (присваивая ей первый свободный код). Функция WriteString() записывает строку в файл. Замечание 1. Как вы могли заметить, записываемые в поток коды постепенно возрастают. До тех пор, пока в таблице не появится, например, в первый раз код 512, все коды будут меньше 512. Кроме того, при компрессии и при декомпрессии коды в таблице добавляются при обработке одного и того же символа, т.е. это происходит “синхронно”. Мы можем воспользоваться этим свойством алгоритма для того, чтобы повысить степень компрессии. Пока в таблицу не добавлен 512 символ, мы будем писать в выходной битовый поток коды из 9 бит, а сразу при добавлении 512 — коды из 10 бит. Соответственно декомпрессор также должен будет воспринимать все коды входного потока 9-битными до момента добавления в таблицу кода 512, после чего будет воспринимать все входные коды как 10-битные. Аналогично мы будем поступать при добавлении в таблицу кодов 1024 и 2048. Данный прием позволяет примерно на 15% поднять степень компрессии: Замечание 2. При сжатии изображения нам важно обеспечить быстроту поиска строк в таблице. Мы можем воспользоваться тем, что каждая следующая подстрока на один символ длиннее предыдущей, кроме того, предыдущая строка уже была нами найдена в таблице. Следовательно, достаточно создать список ссылок на строки, начинающиеся с данной подстроки, как весь процесс поиска в таблице сведется к поиску в строках, содержащихся в списке для предыдущей строки. Понятно, что такая операция может быть проведена очень быстро. Заметим также, что реально нам достаточно хранить в таблице только пару <код предыдущей подстроки, добавленный символ>. Этой информации вполне достаточно для работы алгоритма. Таким образом, массив от 0 до 4095 с элементами <код предыдущей подстроки; добавленный символ; список ссылок на строки, начинающиеся с этой строки> решает поставленную задачу поиска, хотя и очень медленно. На практике для хранения таблицы используется такое же быстрое, как в случае списков, но более компактное по памяти решение — хэш-таблица. Таблица состоит из 8192 (213) элементов. Каждый элемент содержит <код предыдущей подстроки; добавленный символ; код этой строки>. Ключ для поиска длиной в 20 бит формируется с использованием двух первых элементов, хранимых в таблице как одно число (key). Младшие 12 бит этого числа отданы под код, а следующие 8 бит под значение символа. В качестве хэш-функции при этом используется: Index(key)= ((key >> 12) ^ key) & 8191; Где >> — побитовый сдвиг вправо (key >> 12 — мы получаем значение символа), ^ — логическая операция побитового исключающего ИЛИ, & логическое побитовое И. Таким образом, за считанное количество сравнений мы получаем искомый код или сообщение, что такого кода в таблице нет. Подсчитаем лучший и худший коэффициенты компрессии для данного алгоритма. Лучший коэффициент, очевидно, будет получен для цепочки одинаковых байт большой длины (т.е. для 8-битного изображения, все точки которого имеют, для определенности, цвет 0). При этом в 258 строку таблицы мы запишем строку “0, 0”, в 259 — “0, 0, 0”, ... в 4095 — строку из 3839 (=4095-256) нулей. При этом в поток попадет (проверьте по алгоритму!) 3840 кодов, включая код очистки. Следовательно, посчитав сумму арифметической прогрессии от 2 до 3839 (т.е. длину сжатой цепочки) и поделив ее на 3840*12/8 (в поток записываются 12-битные коды), мы получим лучший коэффициент компрессии. Худший коэффициент будет получен, если мы ни разу не встретим подстроку, которая уже есть в таблице (в ней не должно встретиться ни одной одинаковой пары символов). В случае, если мы постоянно будем встречать новую подстроку, мы запишем в выходной поток 3840 кодов, которым будет соответствовать строка из 3838 символов. Без учета замечания 1 это составит увеличение файла почти в 1.5 раза. LZW реализован в форматах GIF и TIFF. * * Характеристики алгоритма LZW: Коэффициенты компрессии: Примерно 1000, 4, 5/7 (Лучший, средний, худший коэффициенты). Сжатие в 1000 раз достигается только на одноцветных изображениях размером кратным примерно 7 Мб. Класс изображений: Ориентирован LZW на 8-битные изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке. Симметричность: Почти симметричен, при условии оптимальной реализации операции поиска строки в таблице. Характерные особенности: Ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. LZW универсален — именно его варианты используются в обычных архиваторах. Код прислал Вася Пупкин. :)


 


Рейтинг@Mail.ru be number one Submitter.ru - Promoting!
Хостинг от uCoz